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The Memory Latency Problem

•  processor speed >> memory speed
• caches are not a panacea
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Prefetching for Arrays: Overview

• Tolerating Memory Latency

• Prefetching Compiler Algorithm and Results

• Implications of These Results

3



Coping with Memory Latency

Reduce Latency:

– Locality Optimizations

• reorder iterations to improve cache reuse

Tolerate Latency:

– Prefetching

• move data close to the processor before it is needed
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Tolerating Latency Through Prefetching

• overlap memory accesses with computation and other accesses
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Types of Prefetching

Cache Blocks:
• (-) limited to unit-stride accesses

Nonblocking Loads: 
• (-) limited ability to move back before use

Hardware-Controlled Prefetching:
• (-) limited to constant-strides and by branch prediction
• (+) no instruction overhead

Software-Controlled Prefetching:
• (-) software sophistication and overhead
• (+) minimal hardware support and broader coverage
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Prefetching Goals

• Domain of Applicability

• Performance Improvement

– maximize benefit

– minimize overhead
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Prefetching Concepts

possible only if addresses can be determined ahead of time
coverage factor = fraction of misses that are prefetched
unnecessary if data is already in the cache
effective if data is in the cache when later referenced

Analysis: what to prefetch
– maximize coverage factor
– minimize unnecessary prefetches

Scheduling: when/how to schedule prefetches
– maximize effectiveness
– minimize overhead per prefetch
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Reducing Prefetching Overhead
• instructions to issue prefetches
• extra demands on memory system

• important to minimize unnecessary prefetches
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Hit Rates for Array Accesses



Compiler Algorithm

Analysis: what to prefetch

• Locality Analysis

Scheduling: when/how to issue prefetches

• Loop Splitting

• Software Pipelining
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Steps in Locality Analysis

1. Find data reuse

– if caches were infinitely large, we would be finished

2. Determine “localized iteration space”

– set of inner loops where the data accessed by an iteration is expected 
to fit within the cache

3. Find data locality:

– reuse  localized iteration space  locality
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Data Locality Example
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for i = 0 to 2

for j = 0 to 100

A[i][j] = B[j][0] + B[j+1][0];

Hit
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Reuse Analysis: Representation

• Map n loop indices into d array indices via array indexing function:

for i = 0 to 2

for j = 0 to 100

A[i][j] = B[j][0] + B[j+1][0];
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• Temporal reuse occurs between iterations     and 
whenever:

• Rather than worrying about individual values      of 
and, we say that reuse occurs along direction     vector
when:

• Solution: compute the nullspace of H

Finding Temporal Reuse
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Temporal Reuse Example

• Reuse between iterations (i1,j1) and (i2,j2) whenever:

• True whenever j1 = j2, and regardless of the difference 
between i1 and i2.
– i.e. whenever the difference lies along the nullspace of         , 
– which is span{(1,0)} (i.e. the outer loop).

for i = 0 to 2

for j = 0 to 100

A[i][j] = B[j][0] + B[j+1][0];
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Prefetch Predicate

Example:
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Locality Type Miss Instance Predicate

None Every Iteration True

Temporal First Iteration i = 0

Spatial Every l iterations
(l = cache line size)

(i mod l) = 0

for i = 0 to 2

for j = 0 to 100

A[i][j] = B[j][0] + B[j+1][0];

Reference Locality Predicate

A[i][j] (j mod 2) = 0

B[j+1][0] i = 0

[ij]
none

spatial[ ]=

[ij]
temporal

none[ ]=



Compiler Algorithm

Analysis: what to prefetch

• Locality Analysis

Scheduling: when/how to issue prefetches

• Loop Splitting

• Software Pipelining
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Loop Splitting

• Decompose loops to isolate cache miss instances
– cheaper than inserting IF statements

• Apply transformations recursively for nested loops

• Suppress transformations when loops become too large

– avoid code explosion
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Locality Type Predicate Loop Transformation

None True None

Temporal i = 0 Peel loop i

Spatial (i mod l) = 0 Unroll loop i by l



Software Pipelining

where l = memory latency, s = shortest path through 
loop body
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Iterations Ahead =  l
s

for (i = 0; i<100; i++)

a[i] = 0;

Original Loop

for (i = 0; i<5; i++)     /* Prolog */
prefetch(&a[i]);

for (i = 0; i<95; i++) { /* Steady State*/
prefetch(&a[i+5]);

a[i] = 0;

}

for (i = 95; i<100; i++) /* Epilog */
a[i] = 0;

Software Pipelined Loop 
(5 iterations ahead)



Example Revisited
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for (i = 0; i < 3; i++)

for (j = 0; j < 100; j++)

A[i][j] = B[j][0] + B[j+1][0];

Original Code
prefetch(&A[0][0]);

for (j = 0; j < 6; j += 2) {

prefetch(&B[j+1][0]);

prefetch(&B[j+2][0]);

prefetch(&A[0][j+1]);

}

for (j = 0; j < 94; j += 2) {

prefetch(&B[j+7][0]);

prefetch(&B[j+8][0]);

prefetch(&A[0][j+7]);

A[0][j] = B[j][0]+B[j+1][0];

A[0][j+1] = B[j+1][0]+B[j+2][0];

}

for (j = 94; j < 100; j += 2) {

A[0][j] = B[j][0]+B[j+1][0];

A[0][j+1] = B[j+1][0]+B[j+2][0];

}

for (i = 1; i < 3; i++) {

prefetch(&A[i][0]);

for (j = 0; j < 6; j += 2)

prefetch(&A[i][j+1]);

for (j = 0; j < 94; j += 2) {

prefetch(&A[i][j+7]);

A[i][j] = B[j][0] + B[j+1][0];

A[i][j+1] = B[j+1][0] + B[j+2][0];

}

for (j = 94; j < 100; j += 2) {

A[i][j] = B[j][0] + B[j+1][0];

A[i][j+1] = B[j+1][0] + B[j+2][0];

}

}

Code with Prefetching

i

j

A[i][j]

i

j

B[j+1][0]

Cache Hit
Cache Miss i = 0

i > 0



Prefetching Indirections

Analysis: what to prefetch

– both dense and indirect references

– difficult to predict whether indirections hit or miss

Scheduling: when/how to issue prefetches

– modification of software pipelining algorithm

21

for (i = 0; i<100; i++)

sum += A[index[i]];



Software Pipelining for Indirections
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for (i = 0; i<100; i++)

sum += A[index[i]];

Original Loop

for (i = 0; i<5; i++)     /* Prolog 1 */
prefetch(&index[i]);

for (i = 0; i<5; i++) {   /* Prolog 2 */
prefetch(&index[i+5]);

prefetch(&A[index[i]]);

}

for (i = 0; i<90; i++) { /* Steady State*/
prefetch(&index[i+10]);

prefetch(&A[index[i+5]]);

sum += A[index[i]];

}

for (i = 90; i<95; i++) { /* Epilog 1 */
prefetch(&A[index[i+5]]);

sum += A[index[i]];

}

for (i = 95; i<100; i++)  /* Epilog 2 */
sum += A[index[i]];

Software Pipelined Loop 
(5 iterations ahead)



Summary of Results

Dense Matrix Code:

– eliminated 50% to 90% of memory stall time

– overheads remain low due to prefetching selectively

– significant improvements in overall performance (6 
over 45%)

Indirections, Sparse Matrix Code:

– expanded coverage to handle some important cases
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Prefetching for Arrays: Concluding 
Remarks

• Demonstrated that software prefetching is 
effective

– selective prefetching to eliminate overhead

– dense matrices and indirections / sparse matrices

– uniprocessors and multiprocessors

• Hardware should focus on providing sufficient 
memory bandwidth
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Prefetching for Recursive Data 
Structures
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Recursive Data Structures

• Examples:
– linked lists, trees, graphs, ...

• A common method of building large data structures

– especially in non-numeric programs

• Cache miss behavior is a concern because:

– large data set with respect to the cache size
– temporal locality may be poor
– little spatial locality among consecutively-accessed nodes

Goal:
• Automatic Compiler-Based Prefetching for Recursive Data 

Structures
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Overview

• Challenges in Prefetching Recursive Data 

Structures

• Three Prefetching Algorithms

• Experimental Results

• Conclusions
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Scheduling Prefetches for Recursive Data Structures
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ni

currently visiting

ni+1 ni+2 ni+3

p
want to prefetch

loading a node

work()

L

W

Our Goal: fully hide latency

•  thus achieving fastest possible computation rate of 1/ W

 e.g., if L=3W, we must prefetch 3 nodes ahead to achieve this

p = &n0

while  (p){

work(p ->data );

p = p->next ;

}

loa d *p  here

Our Goal: fully hide latency
– thus achieving fastest possible computation rate of 1/W 

• e.g., if L = 3W, we must prefetch 3 nodes ahead to achieve this



Performance without Prefetching
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Wi+1

 computa tion ra te = 1/ (L+W)

ni

ni+1

ni+2

ni+3

Li+1

Li
Wi

Li+2
Wi+2

Li+3 Wi+3

Time

while  (p ){

work(p ->data );

p = p->next;

}

computation rate = 1 / (L+W)



Prefetching One Node Ahead

pre fetc h

 computation rate = 1/ L

ni

ni+1

ni+2

ni+3

Wi

Wi+1

Wi+2

Wi+3

pf(p i->next)

while  (p ){

pf(p->next);

work(p ->data );

p = p->next;

}

Li

Li+1

Li+2

Li+3

visiting

Time

•  Comp uta tio n is overla p ped  with memory a c c esses

work(nk)Wk

Lk load ing n k

da ta d epend enc e

Prefetching One Node Ahead
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• Computation is overlapped with memory accesses

computation rate = 1/L



Prefetching Three Nodes Ahead

pre fetc h

ni+1

ni+2

ni+3

Wi+1

pf(p i->next->next->next)

Li

Li+1

Li+2

Li+3

visiting

Time

 computation rate does not improve (still = 1/ L)!

Pointer-Chasing Problem:

any scheme which follows the pointer chain is limited to a rate of 1/L

ni
Wi

Wi+2

Wi+3

while  (p ){

pf(p->next->next->next);

work(p ->data );

p = p->next;

}

L

Prefetching Three Nodes Ahead

31

computation rate does not improve (still = 1/L)!

Pointer-Chasing Problem:

• any scheme which follows the pointer chain is limited to a rate of 1/L



Our Goal: Fully Hide Latency

ni

ni+1

ni+2

ni+3

Li Wi

Li+1 Wi+1

Li+2
Wi+2

Li+3
Wi+3

while  (p ){

pf(&ni+3);

work(p ->data );

p = p->next;

}

pf(&ni+3) 

visiting

Time

 achieves the fastest possible computa tion rate of 1/ W

pre fetc h

Our Goal: Fully Hide Latency
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• achieves the fastest possible computation rate of 1/W



Overview

• Challenges in Prefetching Recursive Data Structures

• Three Prefetching Algorithms

– Greedy Prefetching

– History-Pointer Prefetching

– Data-Linearization Prefetching

• Experimental Results

• Conclusions

33



Pointer-Chasing Problem
Key:
• ni needs to know &ni+d without referencing the d-1 

intermediate nodes

Our proposals:

• use existing pointer(s) in ni to approximate &ni+d

– Greedy Prefetching

• add new pointer(s) to ni to approximate &ni+d

– History-Pointer Prefetching

• compute &ni+d directly from &ni (no ptr deref)

– History-Pointer Prefetching

34



Greedy Prefetching

• Prefetch all neighboring nodes (simplified definition)
– only one will be followed by the immediate control flow
– hopefully, we will visit other neighbors later

• Reasonably effective in practice
• However, little control over the prefetching distance
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preorder(treeNode * t){

if (t != NULL){

pf(t->left);

pf(t->right);

process(t->data);

preorder(t->left);

preorder(t->right);

}

}



History-Pointer Prefetching
• Add new pointer(s) to each node

– history-pointers are obtained from some recent traversal

• Trade space & time for better control over prefetching distances
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Data-Linearization Prefetching
• No pointer dereferences are required

• Map nodes close in the traversal to contiguous memory
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8 9 11 15

1
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4 5 6 7
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preorder 

traversal

1 2 4 8 9 10 11 6 12 7 14
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Summary of Prefetching Algorithms
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Greedy History-Pointer Data-Linearization

Control over 
Prefetching Distance

little more precise more precise

Applicability to 
Recursive Data 
Structures

any RDS revisited; changes 
only slowly

must have a major 
traversal order; 

changes only slowly

Overhead in 
Preparing Prefetch
Addresses

none space + time none in practice

Ease of 
Implementation

relatively 
straightforward

more  difficult more difficulty



Conclusions

• Propose 3 schemes to overcome the pointer-chasing 
problem:
– Greedy Prefetching
– History-Pointer Prefetching
– Data-Linearization Prefetching

• Automated greedy prefetching in SUIF
– improves performance significantly for half of Olden
– memory feedback can further reduce prefetch overhead

• The other 2 schemes can outperform greedy in some 
situations
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 Flow (true) dependence: a statement Si precedes a statement Sj in 
execution and Si computes a data value that Sj uses.

 Implies that Si must execute before Sj.

)SδSandSδ(SSδS 4
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We define four types of data dependence.

Data Dependence
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 Anti dependence: a statement Si precedes a statement Sj in execution 
and Si uses a data value that Sj computes.

 It implies that Si must be executed before Sj.
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We define four types of data dependence.

Data Dependence
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 Output dependence: a statement Si precedes a statement Sj in 
execution and Si computes a data value that Sj also computes.

 It implies that Si must be executed before Sj.
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We define four types of data dependence.

Data Dependence
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 Input dependence: a statement Si precedes a statement Sj in 
execution and Si uses a data value that Sj also uses.

 Does this imply that Si must execute before Sj?
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We define four types of data dependence.

Data Dependence
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Data Dependence (continued)

• The dependence is said to flow from Si to Sj because Si
precedes Sj in execution. 

• Si is said to be the source of the dependence. Sj is said to be 
the sink of the dependence.

• The only “true” dependence is flow dependence; it represents 
the flow of data in the program.

• The other types of dependence are caused by programming 
style; they may be eliminated by re-naming.

B/CA2:S

DCA1:S
2.0AB:S

1.0A:S
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2
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
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Data Dependence (continued)
• Data dependence in a program may be represented using 

a dependence graph G=(V,E), where the nodes V 
represent statements in the program and the directed 
edges E represent dependence relations.
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Value or Location?

• There are two ways a dependence is defined: 
value-oriented or location-oriented.
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Example 1

do i = 2, 4
S1: a(i) = b(i) + c(i)
S2:    d(i) = a(i)

end do

S1[2] S2[2] S1[3] S2[3] S1[4] S2[4]

i=2 i=3 i=4

a(2) a(2) a(3) a(3) a(4) a(4)
d
t

d
t

d
t

 There is an instance of S1 that precedes an instance of S2 in execution and S1

produces data that S2 consumes.

 S1 is the source of the dependence; S2 is the sink of the dependence.

 The dependence flows between instances of statements in the same iteration 
(loop-independent dependence).

 The number of iterations between source and sink (dependence distance) is 
0. The dependence direction is =.

2
t

1 SδS  2
t
01 SδSor
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Example 2

do i = 2, 4
S1: a(i) = b(i) + c(i)
S2:    d(i) = a(i-1)

end do

S1[2] S2[2] S1[3] S2[3] S1[4] S2[4]

i=2 i=3 i=4

a(2) a(1) a(3) a(2) a(4) a(3)

d
t

d
t

 There is an instance of S1 that precedes an instance of S2 in execution and S1

produces data that S2 consumes.

 S1 is the source of the dependence; S2 is the sink of the dependence.

 The dependence flows between instances of statements in different iterations 
(loop-carried dependence).

 The dependence distance is 1. The direction is positive (<).

2
t

1 SδS  2SδS t
11or
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Example 3

do i = 2, 4
S1: a(i) = b(i) + c(i)
S2:    d(i) = a(i+1)

end do

S1[2] S2[2] S1[3] S2[3] S1[4] S2[4]

i=2 i=3 i=4

a(2) a(3) a(3) a(4) a(4) a(5)

d
a

d
a

1
a

2 SδS  1
a
12 SδSor

 There is an instance of S2 that precedes an instance of S1 in execution and S2

consumes data that S1 produces.

 S2 is the source of the dependence; S1 is the sink of the dependence.

 The dependence is loop-carried.

 The dependence distance is 1.

 Are you sure you know why it is              even though S1 appears before S2

in the code?
1

a
2 SS <d
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Example 4
do i = 2, 4

do j = 2, 4
S: a(i,j) = a(i-1,j+1)

end do
end do

S[2,2] S[2,3] S[2,4]

S[3,2]

S[4,2]

S[3,3]

S[4,3]

S[3,4]

S[4,4]

a(1,3) a(1,4) a(1,5)

a(2,3) a(2,4) a(2,5)

a(3,3) a(3,4) a(3,5)

a(2,2) a(2,3) a(2,4)

a(3,2) a(3,3) a(3,4)

a(4,2) a(4,3) a(4,4)

d
t

d
t

d
t

d
t

 An instance of S precedes 
another instance of S and S 
produces data that S 
consumes.

 S is both source and sink.

 The dependence is loop-
carried.

 The dependence distance is 
(1,-1).

SδS t

),(  or SδS t

1)(1,
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Problem Formulation
• Consider the following perfect nest of depth d:

enddo
enddo

enddo
))I(g,),I(g),I(a(g

))I(f,),I(f),I(a(f

U ,L  I do

U ,L  I do
U ,L  I do

m21
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ddd
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



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





)I,,I,(II d21 

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

21

)U,,U,U(U d21 

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dd22110 IbIbIbb
functionslinear
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expression
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Problem Formulation
• Dependence will exist if there exists two iteration 

vectors   and    such that                    and:

)j(g)k(f

)j(g)k(f

)j(g)k(f

mm

22

11



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
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j


0

0

0
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Problem Formulation - Example

• Does there exist two iteration vectors i1 and i2, 
such that 
2  i1  i2  4 and such that:

i1 = i2 -1?
• Answer: yes; i1=2 & i2=3 and i1=3 & i2 =4.
• Hence, there is dependence! 
• The dependence distance vector is i2-i1 = 1.
• The dependence direction vector is sign(1) = .

do i = 2, 4
S1: a(i) = b(i) + c(i)
S2:    d(i) = a(i-1)

end do
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Problem Formulation - Example

• Does there exist two iteration vectors i1 and i2, such 
that 
2  i1  i2  4 and such that:

i1 = i2 +1?

• Answer: yes; i1=3 & i2=2 and i1=4 & i2 =3. (But, but!).

• Hence, there is dependence! 

• The dependence distance vector is i2-i1 = -1.

• The dependence direction vector is sign(-1) = .

• Is this possible?

do i = 2, 4
S1: a(i) = b(i) + c(i)
S2:    d(i) = a(i+1)

end do



-56-

Problem Formulation - Example

• Does there exist two iteration vectors i1 and 
i2, such that 
1  i1  i2  10 and such that:

2*i1 = 2*i2 +1?

• Answer: no; 2*i1 is even & 2*i2+1 is odd.

• Hence, there is no dependence! 

do i = 1, 10
S1: a(2*i) = b(i) + c(i)
S2:    d(i) = a(2*i+1)

end do
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Problem Formulation
• Dependence testing is equivalent to an integer linear 

programming (ILP) problem of 2d variables & m+d
constraint!

• An algorithm that determines if there exits two iteration 
vectors     and     that satisfies these constraints is called 
a dependence tester.

• The dependence distance vector is given by          . 
• The dependence direction vector is give by sign(         ).
• Dependence testing is NP-complete!
• A dependence test that reports dependence only when 

there is dependence is said to be exact. Otherwise it is 
in-exact.

• A dependence test must be conservative; if the 
existence of dependence cannot be ascertained, 
dependence must be assumed.
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Dependence Testers

• Lamport’s Test.
• GCD Test.
• Banerjee’s Inequalities.
• Generalized GCD Test.
• Power Test.
• I-Test.
• Omega Test.
• Delta Test.
• Stanford Test.
• etc…
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